NADH И ЕЕ РОЛЬ В ИНАКТИВАЦИИ ТЕХНОГЕННЫХ ЗАГРЯЗНИТЕЛЕЙ ОКРУЖАЮЩЕЙ СРЕДЫ

Л.В. Авдеева, Е.А. Саратовских

Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук, Черноголовка, Россия, tuman@cat.icp.ac.ru

Аннотация. В данном исследовании проведено изучение солей тяжелых металлов (Cu, Ni, Co, Zn, Fe), пестицидов и их комплексов с металлами на мММО из *Methylococcus capsulatus* (штамм М): мМГ и NADH-OP. Показано, что катионы металлов оказывают ингибиторный эффект на ферменты. Наибольшее торможение ферментативной активности наблюдалось для NADH-OP. Вероятно, такой же эффект можно ожидать и для других NADH-зависимых ферментов.

Ключевые слова: *NADH*, тяжелые металлы, пестициды, ферментативная активность **DOI:** 10.31255/978-5-94797-319-8-1013-1017

Никотинамидадениндинуклеотид (NADH) — кофермент, имеющийся во всех живых клетках. Он является кофактором для ряда дыхательных ферментов, в частности NADH-оксидоредуктазы (NADH-OP). NADH-OP широко распространена в природе и входит в состав как одноклеточных, так и многоклеточных организмов. В данном исследовании нами в качестве объекта исследования была выбрана NADH-OP из метанокисляющих бактерий.

Метанокисляющие бактерии (метанотрофы) широко распространены в природе и насчитывают нескольких сотен видов. Аэробные метанотрофы способны существовать и в экстремальных условиях повышенных или пониженных температур, солености и рН [Троценко, Хмеленина, 2008]. Метанотрофы являются основой бактериальных фильтров, окисляя биогенный метан, который является одним из опасных парниковых газов [Aimen et al., 2018]. Поэтому метанотрофы привлекают внимание исследователей, изучающих глобальное потепление. Суммарная реакция прямого биологического окисления метана кислородом является экзотермической и благодаря ферментам протекает с высокими скоростями и при нормальном давлении субстратов:

$CH_4 + O_2 + NADH \longrightarrow CH_3OH + H_2O + NAD^+$

Уникальность метанотрофов заключается в том, что они окисляют метан до метанола при нормальных условиях. Ключевым ферментом метанотрофов является метанмонооксигеназа (ММО). ММО существует двух видов: растворимая (рММО) и мембраносвязанная (мММО). Все метанотрофы синтезируют мММО, а рММО могут синтезировать только ограниченное число штаммов. Известно, что рММО является многокомпонентным ферментным комплексом и состоит из: гидроксилазы (рМГ) со структурой ($\alpha\beta\gamma$)2, где α -, β -, γ - субъединицы с молекулярными массами 61, 45 и 20 кДа соответственно, NADH – OP (ММОR) с молекулярной массой 39 кДа и третьего компонента, известного как регуляторный белок (ММОВ) с молекулярной массой 16 кДа [Rosenzweig et al., 1993]. Также и мММО является ферментной системой (рис. 1), в состав которой входит мембраносвязанная метангидроксилаза (мМГ), NADH-OP, возможно, ряд пока неизвестных переносчиков электрона и активаторов [Lieberman, Rosenzweig, 2005]. Для функционирования обоих типов ММО необходима NADH-OP, коферментом для которой является NADH.

В последние десятилетия в результате человеческой деятельности резко возрастает в окружающей среде содержание различных токсичных веществ и соединений. В частности к ним относятся пестициды и тяжелые металлы, которые

являются техногенными ксенобиотиками. В связи с важной функцией метанотрофов в глобальном круговороте углерода изучение влияния техногенных загрязнителей окружающей среды на метанотрофы является актуальной задачей.

Рис. 1. Предполагаемые пути переноса электронов от NADH-OP в активный центр рМГ в мембране *M. capsulatus* (M) и *M. capsulatus* (Bath) [Гвоздев и др., 2008].

NADH-OP

Обозначения: а, β, γ – субъединицы рМГ; Си – моноядерный, Си–Си – биядерный медные центры, расположенные в α-субъединице; М–М – предполагаемый биядерный Fе– Fe центр рМГ, расположенный в β-субъединице, на котором происходит окисление метана до метанола; NADH-OP и Cyt с – неинтегральные мембранные белки; 2Fe2S – железосерный центр NADH-OP; Q – убихиноны; Суt с – цитохром с.

В данном исследовании проведено изучение влияния тяжелых металлов (сульфаты Cu (II), Ni(II), Co(II), Zn(II), Fe(II)) на активность мМГ и NADH-OP из метанокисляющих клеток $Methylococcus\ capsulatus\ (штамм\ M).$

Выделение NADH-OP проводили из надосадочной фракции полученной после осаждения разрушенных клеток и фрагментов мембран *М. capsulatus* (М). Активность мМГ в составе мембран определяли по скорости окисления пропилена до окиси пропилена в присутствии в качестве восстановителя NADH или дурохинола методом газожидкостной хроматографии. Активность NADH-OP определяли спектрофотометрически по скорости восстановления йоднитротетразолия хлорида до формазана в присутствии NADH [Гвоздев и др., 2008].

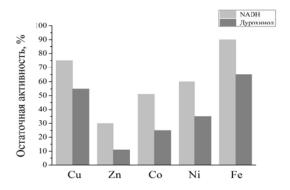


Рис. 2. Остаточная ферментативная активность мембран *M. capsulatus* (M) в реакции окисления пропилена в присутствии 100 мкМ металлов.

Все исследуемые металлы приводили к снижению скорости окисления пропилена, катализируемое мМГ. Наибольшая остаточная активность наблюдалась для Си и Fe (рис. 2). При этом активность мМГ, определяемая с использованием дурохинола в

качестве восстановителя была несколько ниже по сравнению с NADH. Такая же зависимость наблюдалась и в контрольном эксперименте (в отсутствии металлов).

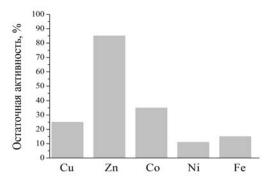


Рис. 3. Остаточная ферментативная активность NADH-OP *M. capsulatus* (M) в присутствии 10 мкМ металлов.

Для мМГ NADH не является непосредственным восстановителем [Гвоздев и др., 2008]. Но электрон-транспортная цепь мММО начинается с окисления NADH (рис. 1). В связи с этим было проведено исследование влияния изучаемых металлов на активность NADH-OP. При тех же концентрациях металлов (100 мкМ) наблюдалось полное ингибирование NADH-OP и денатурация фермента. Для проведения эксперимента концентрация металлов была снижена в 10 раз. Среди изученных металлов только Zn не оказывал существенного влияния на NADH-OP (рис. 3).

Таблица. Влияние солей металлов, пестицидов и комплексов лонтрела с металлами на НАДН-оксидоредуктазу

IA	I M	17	C M	I/ 10 ⁴	Т/и	17	C M(IIT)	TC 104	Т/и
Ингиби	I_{50} , M	V _{max} ,	S_1, M	K _i ·10 ⁴	1/И	V _{max} ,	S_2 , M (HT)	K _i ·10 ⁴	1/И
тор		М•сек ⁻¹	(НАДН)	М		М•сек⁻¹		M HT	
	1 1 10-3		1.00.10-3	НАДН		1 00 10-6	5.00.10-4	7.40	~
лонтр	1,1.10-3		1,23·10 ⁻³	1,00	К	1,88·10 ⁻⁶	6,98.10-4	7,42	б
зенкор	$5,0.10^{-4}$		$4,93 \cdot 10^{-3}$	0,25	К	$0,23\cdot10^{-6}$	3,39.10 ⁻⁴	8,94	б
базагр	$6,0\cdot10^{-4}$	1,82·10 ⁻⁶	1,83.10-4	12,80	б	$0,26\cdot10^{-6}$	$2,55\cdot 10^{-4}$	8,40	б
раунд	1,7.10-3	3,33.10-6	6,17·10 ⁻⁴	22,00	Н	$0,21\cdot10^{-6}$	$2,00\cdot10^{-4}$	42,9	б
кузагар	$2,7\cdot10^{-2}$		9,86·10 ⁻³	14,00	К		5,72·10 ⁻³	159	К
сетокс.	1,7.10-2	2,00.10-6	$7,59 \cdot 10^{-4}$	397,5	Н		11,00.10-3	8,04	К
тачигар	2,7.10-3		$2,47\cdot10^{-3}$	21,00	К		5,30·10 ⁻³	4,55	К
тилт	$2,2\cdot10^{-3}$	1,25.10-4	5,98.10-4	23,00	Н		$13,00\cdot10^{-3}$	1,52	К
MgL_2	$2,0.10^{-3}$	1,66·10 ⁻⁶	8,97.10-4	12,67	Н		$23,83 \cdot 10^{-3}$	3,55	К
MnL_2	$3,0.10^{-3}$		$4,93 \cdot 10^{-3}$	3,80	К	$1,72 \cdot 10^{-6}$	1,81·10 ⁻³	22,3	С
ZnL_2	$1,0\ 10^{-3}$	2,00.10-6	$8,22 \cdot 10^{-4}$	10,19	Н	$1,1\cdot 10^{-6}$	$1,72 \cdot 10^{-3}$	2,46	С
CuL_2	3,3.10-4		$32,88 \cdot 10^{-3}$	0,06	К	$0,44 \cdot 10^{-6}$	$9,37\cdot10^{-4}$	4,01	Н
CoL_2	1,5.10-3	$2,20\cdot10^{-6}$	7,89·10 ⁻⁴	13,73	Н	1,68·10 ⁻⁶	$1,40\cdot10^{-3}$	13,1	С
NiL ₂	$2,0.10^{-3}$	1,80·10 ⁻⁶	$1,23\cdot10^{-3}$	12,36	Н	$1,1\cdot 10^{-6}$	$3,11\cdot10^{-3}$	11,7	Н
FeL_2	$1,1\cdot10^{-3}$		$8,97 \cdot 10^{-3}$	1,13	К	1,54·10 ⁻⁶	$2,20\cdot10^{-3}$	11,7	Н
MoL_2	$8,5 \cdot 10^{-4}$		$19,72 \cdot 10^{-3}$	0,13	К		$47,62 \cdot 10^{-3}$	0,41	К
Cu(ac) ₂	3,3 · 10 -5	1,1·10 ⁻⁶	3,92	1,15	c		13,19	0,67	К
Мо(ам)	3,3·10 ⁻⁴	$1,39 \cdot 10^{-6}$	3,03	8,83	c		6,60	4,40	К
$Mn(ac)_2$	1,3·10 ⁻⁶	9,66·10 ⁻⁷	1,15	0,014	б		8,80	0,02	К
Fe(ac) ₂	$3,3\cdot 10^{-4}$	$2,75 \cdot 10^{-6}$	4,55	14,23	К		4,40	4,13	К
$Ni(ac)_2$	$3,3 \cdot 10^{-5}$	$7,66\cdot10^{-7}$	3,17	0,88	c	- 6 1	14,66	0,70	К

Пестицид или комплекс – без ингибитора: V_{max} =7,40·10⁻⁶ M•сек⁻¹; S_1 =6,58·10⁻³ M; S_2 =2,65·10⁻³ M. Соль – без ингибитора: V_{max} =2,75·10⁻⁶ M•сек⁻¹; S_1 =1,54·10⁻⁴ M; S_2 =3,30·10⁻⁴ M. Тип ингибирования (T/u): κ – конкурентный; θ – бесконкурентный; θ – смешанный

Результаты подробного исследования действия на NADH-OP пестицидов, солей металлов и комплексов гербицида лонтрел с металлами [Саратовских и др., 2005, 2007] представлены в таблице.

Показано, что как по донору, так и по акцептору электронов, так и соединения ведут себя по-разному. Однако с разными константами все они ингибирует NADH-OP. Очевидно, что происходит присоединение функциональных групп субстрата и ингибитора к разным местам активного центра фермента. Антиредуктазная активность возрастает при переходе от соли к пестициду и к комплексу. В поведении солей определяющим фактором является ион металла и строение его электронных оболочек, поэтому рассмотренные соли металлов не конкурируют с NADH за место связывания. В комплексах металлов доминирующим влиянием обладает лигандное окружение. Пиридиновое кольцо имеет строение близкое к NADH, т.е. способно занять место субстрата на белке, а атом азота может отдать неподелённую пару электронов. Изменение координационной сферы металла (лигандного окружения), приводит к кардинальным изменениям в характере ингибирования. Выше нами показано, что металлы в комплексах проявляют высокие степени координации могут образовывать полимерные цепочки, где лиганд выполняет роль «мостика»: L-M-L-Fe-NADH-OP, согласно рис. 4.

Рис. 4. Схема направлений атаки токсикантов в активном центре NADH-OP [Саратовских и др., 2007].

В целом соли металлов, пестициды и комплексы гербицида лонтрел оказали ингибиторный эффект на NADH-OP, что может служить механизмом их токсического действия по отношению к метанокисляющим бактериям.

Литература

Гвоздев Р.И., Тухватуллин И.А., Туманова Л.В. Очистка и свойства мембраносвязанной метангидроксилазы из *Methylococcus capsulatus* (Штамм М) // Известия АН, серия биологическая. -2008. -№ 2. -C. 186-195.

Саратовских Е.А., Коршунова Л.А., Гвоздев Р.И., Куликов А.В. Ингибирование НАДН-оксидоредуктазной реакции гербицидами и фунгицидами различного строения // Известия АН. Сер.хим. -2005. – N 0.005. – 0.0

Саратовских Е.А., Коршунова Л.А., Рощупкина О.С., Скурлатов Ю.И. Кинетика и механизм ингибирования ферментативных процессов металлами // Химическая физика. $-2007.-T.\ 26,\ N\!\!_{2}\ 8.-C.\ 46-53.$

Троценко Ю.А., Хмеленина В.Н. Экстремофильные метанотрофы. – Пущино: ОНТИ ПНЦ РАН, 2008. – 205 с.

Aimen H., Khan A.S, Kanwal N. Methanotrophs: The Natural Way to Tackle Greenhouse Effect // Journal of Bioremediation & Biodegradation. – 2018. –V. 9. – P. 432.

Lieberman R.L., Rosenzweig A.C. Crystal structure of a membrane - bound metalloenzyme that catalyses the biological oxidation of methane // Nature. -2005. - V.434. - P.177-182.

Rosenzweig A.C., Frederick C.A., Lippard J.S., Nordlund P. Crystal structure of a bacterial nonheme iron hydroxylase that catalyses the biological oxidation of methane // Nature. -1993. - V. 366. - P. 537-543.

NADH AND ITS ROLE IN INACTIVATION OF TECHNOGENIC POLLUTION OF ENVIRONMENT

L.V. Avdeeva, E.A. Saratovskikh

Institute of problems of chemical physics RAS, Chernogolovka, Russia, tuman@cat.icp.ac.ru

Abstract. In this study, the effect of heavy metals (Cu, Ni, Co, Zn, Fe) on MMO from *Methylococcus capsulatus* (strain M): pMH and NADH-OR has been studied. It was shown that metal cations have an inhibitory effect on this enzymes. The greatest inhibition of enzymatic activity was observed for NADH-OR. Probably the same effect can be expected for other NADH-dependent enzymes.

Keywords: NADH, heavy metals, pesticide, enzymatic activity